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I. Introduction to wavelets 
[1,2,6,7] 

Wavelet analysis is used to decomposes sounds and images into component waves of varying durations, 

called wavelets which are localised vibrations of a sound signal or localized detail in an image. This analysis can 

be used in signal processing for removing noise. Jean Baptist Joseph Fourier (1807) has introduced frequency 

analysis leading Fourier analysis.  He also explained the fact that functions can be represented as the sum of sine 

and cosine which led to Fourier Transform.   

Alfred Haar in the year 1909 introduced wavelets. Haar’s contribution to wavelets is very evident so the 

entire wavelet family named after him.  The Haar wavelets are the simplest of the wavelet families.   

 

II. Haar wavelets 
[2,3,4] 

A Haar wavelet is the simplest type of wavelet. In discrete form, Haar wavelets are related to a 

mathematical operation called the Haar transform. The Haar transform serves as a prototype for all other 

wavelet transforms.  

 

III. Haar spaces 
Let  t  be the box function defined by, 
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The equation, 

     122  ttt                                         (2)
 

is called the dilation equation. The Haar function  t  is typically called a scaling function. The space 

    RLktspanV Zk

2

0    is called the Haar space 0V  generated by the Haar function  t . The set 

   Zkkt   forms an orthonormal basis for 
0V  . The set    Zkkt   also forms a Riesz basis for 

0V .  

 

[Riesz basis: Suppose that    RLt 2  and BA 0  are constants such that  
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for any square-summable sequence c


. Then we say that the translates   
Znn t


  form a Riesz basis of 
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 0  .] The projection of the functions    RLtf 2  into 0V  is given by, 
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The vector space     RLktspanV Zk

j

j

22    is called the Haar space 
jV .  RLV j

2  is a vector 

space of piecewise constant functions with possible breakpoints at Zj2 . For each Zk , define the function 
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The set   
Zkkj t

,  is an orthonormal basis for 
jV . The compact support for the functions  tkj ,  is given 

by, 
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The dyadic interval ZkjI kj ,,,
, dilation equation and projection function are  defined by 
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 where 

jP is called the approximation operator and the space 
jV  is also known as approximation space. The 

Haar spaces  
ZjjV



 satisfy 
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IV. Haar wavelet spaces 
The wavelet function  t  is given by, 
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The equation,
 

     122  ttt  , 
is called the dilation equation. The space     RLktspanW Zk

2

0    is 

called the Haar wavelet space 
0W  generated by the Haar wavelet function  t . The set    Zkkt   forms 

an orthonormal basis for
0W  . The set    Zkkt   also forms a Riesz basis for

0W  . The Haar wavelet space 

0W  satisfies the following properties. 

 If   0Vtf   and   0Wtg  , then     0, tgtf . 

 
0V  and 

0W  are perpendicular to each other.     (12) 

 
001 WVV  . 

 

The vector space     RLktspanW Zk

j

j

22    is called the Haar wavelet space
jW . 

For each Zk , define the function   /22
, 2 2

j
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basis for jW . The compact support for the functions  tkj ,  is given by, 
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For Zkj , , the dilation equation for  tkj ,  is given by, 
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For each Zj , the detail operator 
jQ on functions    RLtf 2  is defined by, 
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The Haar wavelet spaces  
ZjjW



 satisfy the following properties. 

If j  and l  are integers with jl  , then 
jV  and 

jW  are perpendicular to each other. 

If j  and l  are integers with jl  , then 
jW  and 

lW  are perpendicular to each other. 
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Let   11   jj Vtf  be defined as  
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Suppose that  tf j
 is the projection of  tf j 1

 into 
jV  and g
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If      tftftg jjj  1
 is the residual function in 

1jV , then   jj Wtg   and is thus given by  
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Thus, a piecewise constant function   0, jtf j
 with possible breakpoints at points in Zj2  can be 

decomposed into a piecewise constant approximation function  tf j 1
 with possible breakpoints on the coarser 

grid Zj 12   and a piecewise constant detail function  tg j 1
 with possible breakpoints in Zj2 . This process 

can be iterated and finally  tf j
 can be written as the sum of an approximation function  tf0

 with possible 
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 respectively. The next step is to model the decomposition in terms of linear 

transformations (matrices). The technique to process discrete data via a discrete version of the decomposition 

process is called the discrete Haar wavelet transformation. 

 

V. Discrete Haar wavelet transformation 
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Suppose that N  is an even positive integer. The discrete Haar wavelet transformation is defined as, 
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The 
N

N


2

 block 
2NH  is called the averages block and the N

N


2

 block 
2NG  is called the details block. 

We have, baH N
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. The inverse discrete Haar wavelet transformation is given by, 
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The two-dimensional discrete Haar wavelet transformation B of a matrix A  is defines as, 

 
T
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The inverse of two-dimensional discrete Haar wavelet transformation is given by, 

 

N

T
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VI. Advantages of Haar Wavelet Transform 
a) It is very simple. 

b) It is fast. 

c) It can be calculated without any need of temporary array so it needs less memory. 

d) It can be reversed exactly without the edge effects.  

 

VII. GRAPHS 
[5] 

Original function xf sin
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Haar Wavelet 

                                            
 

Haar Wavelet for xf sin  
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